
Martin von Zweigbergk
2023-04-06

Mercurial at Google
Also known as Fig



Background



About me

Martin von 
Zweigbergk

Ericsson 

2014-now
Fig: Mercurial as a 
client for Google's 
internal monorepo

SWE on internal VCS

2010-2013
Cleaned up
git rebase

code

Git 
contributor

2011-2014
Full-stack developer 

for compensation 
app

Joined Google

2004-2011
SIP telephony & IPTV
Drove migration to 

Git



CVS

1998

Piper

CitC + Piper

?

CitC + Piper + Mercurial
(a.k.a. Fig)

deasdfsdf

● Started with CVS, then Perforce
● Repo too large for Perforce ⇒ Piper was born
● Working copy too large for local disk ⇒ CitC was born
● Users wanted DVCS workflows (stacked commits) ⇒ Fig was born

For more info about the extreme size of Google’s monorepo, see Rachel Potvin’s talk from @Scale

Background: VCS at Google 

Perforce

https://youtu.be/W71BTkUbdqE


Workflow



A slice of the monorepo

● Users clone a slice of Piper (the monorepo) into 
a Mercurial repo
○ Sliced by both files and history
○ Files and commits outside the slice are not 

visible in the repo
● We use the evolve extension for better UX
● The evolve state is local (not exchanged)

○ But we create new obsmarkers locally 
when pulling a commit for a review that 
has been merged

Overview



Restricted by narrow

● On local disk:
○ The user manages the set of tracked paths 

by narrow
● On CitC:

○ Automatically managed by Fig
○ Fig asks the file system which paths the 

user has touched

Working copy



Review done in Piper

● Commits are uploaded to Piper as “changelists” 
for review
○ Once approved, the changelist gets 

“submitted” directly in Piper (“merged” in 
Heptapod-/GitHub-speak)

● Custom commands e.g. to:
○ Upload/export commits for code review
○ Fetch pending review as commit

● We have a custom topics-like extension for 
associating commits to changelists (N:1)

Code review



Architecture



Server

Server speaks hg’s wire protocol

● Our server acts (mostly) like a regular hg remote
● The indexer runs continuously, indexing 

submitted Piper changelists as public commits 
in the database

● On clone/pull, server returns bundle matching 
paths from client (narrow extension)

● Server can also include pending changelists 
(unmerged reviews), converted to commits on 
the fly

● Server writes draft changelists in Piper on push
● Commits uploaded for code review contain extra 

metadata about mapping to Piper

User’s 
workstation

Cloud

hg + evolve + 
remotefilelog + narrow 

+ tree manifests + 
internal extensions

server indexer

database Piper (internal 
monorepo)

CitC 
(distributed 
file system)

Daemon 
(keeps code 
review info)



Client

Extensions for scalability

● Repos are stored in the file system
○ CitC (distributed) or local disk

● remotefilelog extension for fetching and 
storing file contents and for storing manifests

● narrow extension for slicing repo by paths and 
history

● Manifests stored using treemanifests
○ On CitC, manifests are created on the fly 

from the file system
● Custom extension for CitC integration

User’s 
workstation

Cloud

hg + evolve + 
remotefilelog + narrow 

+ tree manifests + 
internal extensions

server indexer

database Piper (internal 
monorepo)

CitC 
(distributed 
file system)

Daemon 
(keeps code 
review info)



Future plans



Next steps

Current problems

● Performance (Python, eager/linear data 
structures do not scale to monorepo)

● Consistency (Mercurial is not designed for 
distributed storage)

● Integration (making APIs on top of a CLI)



Next steps

● Switching from hg to 
https://github.com/martinvonz/jj

● Moving repos from .hg/ to the cloud
○ Give illusion of having full repo locally

https://github.com/martinvonz/jj


Thank you
Email: martinvonz@google.com


